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Abstract

A multiple spatial and temporal scales method is studied to simulate numerically the phenomenon of non-Fourier
heat conduction in periodic heterogeneous materials. The model developed is based on the higher-order homogeniza-
tion theory with multiple spatial and temporal scales in one dimensional case. The amplified spatial scale and the
reduced temporal scale are introduced respectively to account for the fluctuations of non-Fourier heat conduction
due to material heterogeneity and non-local effect of the homogenized solution. By separating the governing equations
into various scales, the different orders of homogenized non-Fourier heat conduction equations are obtained. The
reduced time dependence is thus eliminated and the fourth-order governing differential equations are derived. To avoid
the necessity of C1 continuous finite element implementation, a C0 continuous mixed finite element approximation
scheme is put forward. Numerical results are shown to demonstrate the efficiency and validity of the proposed method.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The classical Fourier law is well known and has been used successfully for analysis of steady heat con-
duction process under long time heating and unsteady process with quick propagation speed of the thermal
wave. However, Fourier law breaks down in situations involving very short times, high heat fluxes, and at
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very cryogenic temperatures (Baumeister and Hamill, 1969). The anomaly of this classical theory is from
the assumption that the heat flux vector and the temperature gradient across a material volume occur at
the same instant of time. Such an immediate response results in an infinite speed of heat propagation.
The heat sources such as laser and microwave with very high frequency and extremely short duration

have been used widely in modern technology in past years. This leads to the increase of research interest
of non-Fourier law. The mathematical description of non-Fourier heat conduction law, which represents
the time lag of heat waves, is a hyperbolic type differential equation. As has been pointed out by many
researchers, this non-classical heat conduction law has its great value in many practical applications, such
as laser penetration and welding, explosive bonding, electrical discharge machining, heating and cooling of
microelectronic elements involving a duration time of nanoseconds or even picoseconds in which the energy
is absorbed within a distance of microns from the surface. In order to associate a finite heat propagation
speed, Cattaneo (1958) and Vernotte (1961) modified Fourier law by including a relaxation model. Non-
Fourier heat conduction in solids with different shapes and boundary conditions has been studied exten-
sively. Frankel et al. (1987), using flux formulation of hyperbolic heat conduction equation, gave an
analytical solution for a finite slab under boundary condition of rectangular heat pulse. Ozisik and Tzou
(1994) analyzed the special features in thermal wave propagation, and the thermal wave model in relation
to the microscopic two-step model. Kaminski (1990) determined experimentally the values of a relaxation
time for non-homogeneous inner structure materials. Tzou (1995) presented a universal constitutive equa-
tion between the heat flux vector and the temperature gradient. Jiaung et al. (2003) studied the effect of the
phase lag of temperature gradient. On the other hand, the stochastic finite element method was successfully
applied in displacement-based finite element method in transient heat transfer for heterogeneous media,
which is based on the second order perturbation second central probabilistic moment method (Hien and
Kleiber, 1997; Kamiński and Hien, 1999a,b).
It has been found that the multi-scale asymptotic homogenization approach is wide acceptance for the

study of heterogeneous structures due to its systematic mathematical approach and ability to account for
multi-scale features (Bakhvalov and Panasenko, 1989; Benssousan et al., 1978; Chung et al., 2004; Sanchez-
Palencia, 1980). The mathematical homogenization method was used as an alternative approach to com-
pute effective constitutive parameters of complex materials with a periodic structure in Hassani and Hinton
(1998). To capture the effects of microstructural changes on the overall response of a composite made of
bodies in elastic and elastic–plastic contact, numerical homogenized constitutive law is then defined in
Zhang et al. (1999) and Zhang and Schrefler (2000) for the global behavior of the heterogeneous materials.
For the composite with detailed information on the microgeometry, Kamiński (2000) extended the effective
modules method by using the finite element method or the boundary element method in numerical imple-
mentations, which enable direct computations of the effective characteristics. Gambin and Kroner (1989),
and Boutin (1996) have studied the role of higher-order terms in the asymptotic expansion in statics. Boutin
and Auriault (1993) demonstrated the terms of a higher-order successively introduced effects of disper-
sion and attenuation in elastokinetics. A single-frequency time-dependence is assumed prior to the homog-
enization process (Kevorkian and Bosley, 1998). Chen and Fish (2001) and Fish and Chen (2001a,b)
investigated the problem of secularity introduced by the higher order multiple spatial–temporal scale
approximation of the initial boundary value problem in periodic heterogeneous media. Fish et al. (2002)
developed a non-local approach independent of the slow time scale considered the problem of secularity.
Recently, considerable interest has been generated toward transient heat transfer by the multi-scale

asymptotic homogenization method and its potential applications in engineering and technology. Boutin
(1995) studied the heat propagation in media with a periodic microstructure. It is shown that the higher
terms introduce successive gradients of temperature and tensors, characteristic of the microstucture, which
result in non-local effects. A systematic way of obtaining the effective viscoelastic moduli in time and fre-
quency domain is presented for periodic microstructures in Yi et al. (1998), the effective modulus is formu-
lated using the asymptotic homogenization method. Yu and Fish (2002) developed a systematic approach
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to analyzed multiple physical processes interacting at multiple spatial and temporal scales, which be applied
to the coupled thermo-viscoelastic composites with microscopically periodic mechanical and thermal prop-
erties. Kamiński (2003) applied the mathematical model to the homogenization of transient heat transfer
problems in some composite materials, where the finite element method computation is based on the effec-
tive modules method introduced for periodic composites.
The modeling approach in this paper differs somewhat from those proposed in previous studies since in

the proposed present analysis, non-Fourier heat conduction law is adopted to describe the heat conduction
process. To resolve the dispersion effect, following the work contributed by Fish et al. (2002), a computa-
tional model based on the higher-order homogenization with multiple spatial and temporal scales is devel-
oped. The wave behaviors of non-Fourier heat conduction in periodic heterogeneous materials subjected to
extreme conditions are investigated. By introducing amplified spatial scale and reduced temporal scale in
the multiscale analysis model, different orders of homogenized equations are derived from the mathematical
homogenization theory. With incorporating different orders of homogenized heat conduction equations
and eliminating a reduced temporal scale dependence, the high-order homogenized heat conduction equa-
tion at the macro scale is obtained. To avoid the requirement of C1 continuous finite element in numerical
implementation, the C0 continuous mixed finite element approximation is developed for a solution of the
resulting non-local non-Fourier heat conduction equations. Finally, numerical results are given to illustrate
the efficiency and validity of the method proposed.
2. Governing equations of heat conduction with non-Fourier law

In the analysis of heat conduction, two kinds of constitutive equation for heat conduction can be
adopted. The first, and the most widely employed one is the classical Fourier law
qðx; tÞ ¼ kðxÞ/ðx; tÞ;x ð1Þ
With Eq. (1) and the local energy balance equation
qðx; tÞ;x ¼ qc _/ðx; tÞ ð2Þ
the following classical parabolic heat conduction equation can be obtained
qðxÞcðxÞ _/ðx; tÞ � fkðxÞ/ðx; tÞ;xg;x ¼ 0 ð3Þ
where q(x,t) is the heat flux density, k(x,t) is a positive scalar representing thermal conductivity of the mate-
rial, /(x,t) is the local equilibrium temperature, q(x,t) is the mass density and c(x,t) is the specific heat
capacity. As it is well known, Eq. (3) yields a parabolic differential equation for the temperature field.
( );x and ð�Þ

:
denote the total derivatives with respect to space and time variable, respectively.

As pointed out by many researchers, the classical Fourier heat conduction theory becomes inaccurate
due to neglecting the effect of a finite speed of propagation when heat sources such as lasers and microwaves
with extremely short duration or very high frequency, are investigated. Under this circumstance, non-
Fourier heat conduction model becomes more reliable in describing the diffusion process and predicting
the temperature distribution. A non-Fourier heat flux model can be expressed in the following form
qðx; tÞ ¼ kðxÞ/ðx; tÞ;x þ sðxÞ _qðx; tÞ ð4Þ
With the help of Eqs. (2) and (4), a hyperbolic differential governing equation of non-Fourier heat conduc-
tion can be derived
kðxÞfsðxÞ€/ðx; tÞ þ _/ðx; tÞg � fkðxÞ/;xg;x ¼ 0 ð5Þ
where s(x) is the relaxation time, k(x) is the specific heat of unit volume.
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3. Asymptotic analysis method with multiple spatial and temporal scales

In the present paper, one dimensional non-classical heat conduction process in periodic heterogeneous
material will be investigated. Following the work presented by Fish et al. (2002), it is assumed that the char-
acteristic size of the macroscopic domain L is sufficiently larger than the characteristic size l of the material
heterogeneity. Two spatial variables: a macro- or whole spatial scale x and a micro- or local amplified spa-
tial scale y, which are related by (see Fig. 1)
y ¼ x=e ð6Þ

where 0 < e 	 1 denotes the amplified spatial variation of material properties.
In addition to the spatial variables with different scales, the two multiple scale time variables are also

introduced: one is a general temporal scale t0 = t and the other is a reduced temporal scale t1 = e2t.
Since the transient temperature field / depends on x, y, t0 and t1, a multiple-scale asymptotic expansion

is employed to approximate the transient temperature field /
/ðx; y; tÞ ¼ /0ðx; y; t0; t1Þ þ e/1ðx; y; t0; t1Þ þ e2/2ðx; y; t0; t1Þ þ � � � ð7Þ

Let us consider a two-component bar with the periodic microstructures as shown in Fig. 1, the input heat
supply /(t) on the right end of the bar is the only heat source. The adiabatic boundary conditions are im-
posed on the bar, so that no heat transfer occurs between the bar and the ambience. l is the unit cell dimen-
sion on x spatial scale and bX are the length of the unit cell on y spatial scale, where bX ¼ l=e. In the
following, we assume that the spatial gradient term of the heat flux density has local periodicity.
The hyperbolic equation governing the transient non-Fourier heat conduction is given by
kðx=eÞfsðx=eÞ€/ þ _/g � fkðx=eÞ/;xg;x ¼ 0 on X ð8Þ
The macro-domain boundary conditions are
/ð0; tÞ ¼ 0 ð9Þ

/;xðL; tÞ ¼
QðtÞ

kðLÞ � F ð10Þ
The initial boundary conditions can be written as
/ðx; 0Þ ¼ f ðxÞ ð11Þ

_/ðx; 0Þ ¼ gðxÞ ð12Þ

where F and Q(t) are cross-sectional area of the bar and external heat source, respectively; X is the entire
macro domain (k (x/e), s(x/e) and k(x/e) have local periodicities on microscopic constitution).
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Fig. 1. One-dimensional bar with periodic microstructure and the associated unit cell.
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The following results in Hassani and Hinton (1998) will be used in the following derivations:
Fact (1). The derivative of a periodic function is also a periodic function with the same period.
Fact (2). The integral of the derivative of a periodic function over the period is zero. (These facts can

easily be verified by the definition of derivative and periodicity).
Fact (3). If U = U(x,y(x)), then
dU
dx

¼ oU
ox

þ oU
oy

� oy
ox

ð13Þ
if y = x/e, then
dU
dx

¼ oU
ox

þ 1

e
� oU
oy

ð14Þ
The averaging operator is defined as
h�i ¼ jY j�1
Z
Y
dY ð15Þ
Using the chain rule, the spatial and temporal derivatives can be expressed as
/;x ¼ /;x þ e�1/;y ;
_/ ¼ /;t0 þ e2/;t1 ;

€/ ¼ /;t0t0 þ 2e2/;t1t0 þ e4/;t1t1 ð16Þ
Then the spatial gradient term of the heat flux density takes the following form
q0 ¼ kð/;x þ e�1/;yÞ ð17Þ
Substituting Eq. (16) into Eq. (8), yields
k � fðs/;t0t0 þ /;t0Þ þ e2ð2s/;t0t1 þ /;t1Þ þ e4s/;t1t1g ¼ q0;x þ e�1q0;y ð18Þ
Substituting the asymptotic expansion of /(x,y, t) into Eq. (17), we obtain the asymptotic expansion of q 0.
q0 ¼ kfð/0;x þ e�1/0;yÞ þ ðe/1;x þ /1;yÞ þ ðe2/2;x þ e/2;yÞ þ � � �g
¼ kfe�1/0;y þ ð/0;x þ /1;yÞ þ eð/1;x þ /2;yÞ þ � � �g
¼ e�1q0�1 þ q00 þ eq01 þ e2q02 þ � � � ð19Þ
where
q0�1 ¼ k/0;y ; q0s ¼ kð/s;x þ /sþ1;yÞ s ¼ 0; 1; 2; . . . ð20Þ
Substituting the asymptotic expansions of /(x,y, t) and q 0 into Eq. (18), LHS of Eq. (18) becomes
k � fðs/0;t0t0 þ /0;t0Þ þ eðs/1;t0t0 þ /1;t0Þ þ e2ðs/2;t0t0 þ /2;t0Þ þ � � � þ e2ð2s/0;t0t1 þ /0;t1Þ
þ e3ð2s/1;t0t1 þ /1;t1Þ þ e4ð2s/2;t0t1 þ /2;t1Þ þ � � � þ e4s/0;t1t1 þ e5s/1;t1t1 þ e6s/2;t1t1 þ � � �g ð21Þ
RHS of Eq. (18) becomes
e�1q0�1;x þ q00;x þ eq01;x þ � � � þ e�2q0�1;y þ e�1q00;y þ q01;y þ � � �
¼ e�2q0�1;y þ e�1ðq00;y þ q0�1;xÞ þ ðq01;y þ q00;xÞ þ � � � ð22Þ
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Comparing Eqs. (21) and (22), since the corresponding coefficients of the same order of en are equivalent,
the following equations of heat conduction for various orders of e are obtained
Oðe�2Þ : q0�1;y ¼ 0 ð23Þ
Oðe�1Þ : q00;y þ q0�1;x ¼ 0 ð24Þ
Oðe0Þ : kðs/0;t0t0 þ /0;t0Þ ¼ q01;y þ q00;x ð25Þ
Oðe1Þ : kðs/1;t0t0 þ /1;t0Þ ¼ q02;y þ q01;x ð26Þ
Oðe2Þ : kðs/2;t0t0 þ /2;t0 þ 2s/0;t0t1 þ /0;t1Þ ¼ q03;y þ q02;x ð27Þ

..

. ..
. ..

.

4. Resolution of problems at various orders of heat conduction equations

4.1. O(e�2) homogenization problem

Consider the O(e�2) heat conduction equation (23), i.e. q0�1;y ¼ 0, multiplying it by /0, then integrating it
over the unit cell domain, and finally performing integration by parts yields
Z

Y
/0q

0
�1;y dY ¼

Z
oY

/0q
0
�1nds�

Z
Y
kð/0;yÞ

2 dY ¼ 0 ð28Þ
The first term in Eq. (28) vanishes because of periodicity of the boundary conditions in the unit cell. Since k
is a positive scalar, we have
/0;y ¼ 0 ) /0 ¼ U0ðx; t0; t1Þ ð29Þ
and
q0�1 ¼ k/0;y ¼ 0 ð30Þ
4.2. O(e�1) homogenization problem

Consider the O(e�1) heat conduction equation (24), i.e. q00;y þ q0�1;x ¼ 0, since Eq. (30) q0�1 ¼ 0 results in
q0�1;x ¼ 0, substituting Eqs. (20) and (29) into Eq. (24) yields
q00;y þ q0�1;x ¼ q00;y ¼ fkð/1;y þ U0;xÞg;y ¼ 0 ð31Þ
Taking the linear relationship between /1 and U0,x into consideration, we can write the general form of /1
as follows
/1ðx; y; t0; t1Þ ¼ U1ðx; t0; t1Þ þ AðyÞU0;x ð32Þ

Substituting Eq. (32) into Eqs. (31) and (20) yields
fkð1þ A;yÞg;y ¼ 0 ð33Þ

q00 ¼ U0;xkð1þ A;yÞ ð34Þ

Consider the structure of unit cell shown in Fig. 1, the cell domain consists of subdomains X(1) and X(2)

occupied by microconstituents 1 and 2, respectively, such that
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Xð1Þ ¼ fyj06y < abXg; Xð2Þ ¼ fyjabX6y6bXg
where 0 6 a 6 1 is the volume fraction of material 1 in the unit cell. Eqs. (33) and (34) can be rewritten
over a unit cell domain
kjð1þ Aj;yÞ ¼ aj; q0
0ðjÞ

¼ U0;xkjð1þ Aj;yÞ ðj ¼ 1; 2Þ ð35Þ
where aj is constants. Aj(y) can be solved from the following conditions
Periodicity conditions
/1ðy ¼ 0Þ ¼ /1ðy ¼ bXÞ ð36Þ

q00ðy ¼ 0Þ ¼ q00ðy ¼ bXÞ ð37Þ

Continuity conditions
½/1ðy ¼ abXÞ� ¼ 0 ð38Þ

½q00ðy ¼ abXÞ� ¼ 0 ð39Þ

where [ ] is the jump operator.
Taking normalization, we have
h/1ðx; y; t0; t1Þi ¼ U1ðx; t0; t1Þ ) hAðyÞi ¼ 0 ð40Þ

and Aj(y) can be uniquely determined
A1ðyÞ ¼
ð1� aÞðk2 � k1Þ
ð1� aÞk1 þ ak2

y � abX
2

 !
ð41Þ

A2ðyÞ ¼
aðk1 � k2Þ

ð1� aÞk1 þ ak2
y � ð1þ aÞbX

2

 !
ð42Þ

kn ¼ hkð1þ A;yÞi ¼
k1k2

ð1� aÞk1 þ ak2
ð43Þ
where kn is called the zero-order homogenized thermal conductivity of the composite and has the same form
as that for the classical homogenized model.

4.3. O(e0) homogenization problem

Consider the O(e0) heat conduction equation (25), i.e. k � ðs/0;t0t0 þ /0;t0Þ ¼ q01;y þ q00;x, taking into ac-
count Fact (2) and the definition of averaging operator, we have
hq01;yi ¼ 0 ð44Þ

Taking the relaxation time s = sn, applying the averaging operator to Eq. (25) and substituting Eqs. (29)
and (44) into Eq. (25) result
knðsU0;t0t0 þ U0;t0Þ � hq00;xi ¼ 0 ð45Þ
in which
kn ¼ hki ¼ ak1 þ ð1� aÞk2; sn ¼ hsi ¼ as1 þ ð1� aÞs2 ð46Þ

where kn is homogenized specific heat of unit volume, and sn is homogenized relaxation time.
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Substituting Eq. (34) into Eq. (45) yields the classical homogenized macroscopic equation of heat con-
duction at O(e0)
knðsU0;t0t0 þ U0;t0Þ � knU0;xx ¼ 0 ð47Þ

Substituting Eqs. (20), (34) and (29), (32) into Eq. (25) yields
kðsU0;t0t0 þ U0;t0Þ ¼ fkð/2;y þ U1;x þ AU0;xxÞg;y þ kð1þ A;yÞU0;xx ð48Þ
Substituting Eq. (47) into Eq. (48) yields
fkð/2;y þ U1;x þ AU0;xxÞg;y ¼ knfbðyÞ � 1gU0;xx ð49Þ
where
bðyÞ ¼ kðyÞ=kn ð50Þ
Due to the linear relationship between /2 and U1,x, U0,xx, the general solution of /2 is decomposed as
/2ðx; y; t0; t1Þ ¼ U2ðx; t0; t1Þ þ AðyÞU1;x þ BðyÞU0;xx ð51Þ

Substituting Eq. (51) into Eqs. (49) and (20) yields
fkðAþ B;yÞg;y ¼ fbðyÞ � 1gkn ð52Þ

q01 ¼ kð1þ A;yÞU1;x þ kðAþ B;yÞU0;xx ð53Þ

Following the same way and employing Eqs. (36)–(40), the solution of B(y) can be derived as
B1ðyÞ ¼
kn
2k1

k1
kn

� 1

� �
� ð1� aÞðk2 � k1Þ
2ðð1� aÞk1 þ ak2Þ

� �
y2 þ � abXkn

2k1

k1
kn

� 1

� �
þ að1� aÞbXðk2 � k1Þ
2ðð1� aÞk1 þ ak2Þ

( )
y

þ �ðð1� a2Þk1 � a2k2ÞabX2
kn

12k1k2

k1
kn

� 1

� �
þ að1� aÞð1� 2aÞbX2

ðk2 � k1Þ
12ðð1� aÞk1 þ ak2Þ

( )
ð54Þ

B2ðyÞ ¼
kn
2k2

k2
kn

� 1

� �
þ aðk2 � k1Þ
2ðð1� aÞk1 þ ak2Þ

� �
y2

þ �ð1þ aÞbXkn
2k2

k2
kn

� 1

� �
þ að1þ aÞbXðk2 � k1Þ
2ðð1� aÞk1 þ ak2Þ

( )
y

þ �ðða3 � 3a2 � 3a � 1Þk1 � ða3 � a2Þk2ÞbX2
kn

12k1k2

k2
kn

� 1

� �
þ að1þ aÞð1þ 2aÞbX2

ðk2 � k1Þ
12ðð1� aÞk1 þ ak2Þ

( )
ð55Þ
According to Eqs. (54) and (55), we have
hkAi ¼ 0 ð56Þ

hkðAþ B;yÞi ¼ 0 ð57Þ
4.4. O(e1) homogenization problem

Consider the O(e1) heat conduction equation (26), i.e. kðs/1;t0t0 þ /1;t0Þ ¼ q02;y þ q01;x, taking into account
Fact (2) and the definition of averaging operator, we have
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hq02;yi ¼ 0 ð58Þ
Applying the averaging operator to Eq. (26) and then substituting Eqs. (32) and (58) into Eq. (26) yield
knðsU1;t0t0 þ U1;t0Þ þ hkAifsðU0;xÞ;t0t0 þ ðU0;xÞ;t0g ¼ hq01;xi ð59Þ
Substituting Eq. (53) into Eq. (59), yields
knðsU1;t0t0 þ U1;t0Þ þ hkAifsðU0;xÞ;t0t0 þ ðU0;xÞ;t0g ¼ hkð1þ A;yÞiU1;xx þ hkðAþ B;yÞiU0;xxx ð60Þ
Substituting Eqs. (43), (56) and (57) into Eq. (60), yields the macroscopic equation of heat conduction at
order of O(e1)
knðsU1;t0t0 þ U1;t0Þ � knU1;xx ¼ 0 ð61Þ
Substituting Eqs. (20), (53) and (32) (51) into heat conduction equation (26) yields
kfðsU1;t0t0 þ U1;t0Þ þ AðsU0;t0t0 þ U0;t0Þ;xg ¼ fkð/3;y þ U2;x þ AU1;xx þ BU0;xxxÞg;y
þ kð1þ AyÞU1;xx þ kðAþ B;yÞU0;xxx ð62Þ
Substituting Eqs. (47) and (61) into Eq. (62) yields
fkð/3;y þ U2;x þ AU1;xx þ BU0;xxxÞg;y ¼ knðb � 1ÞU1;xx þ fknbA� kðAþ B;yÞgU0;xxx ð63Þ
Due to the linear relationship between /3 and U2,x, U1,xx, U0,xxx, the general solution of /3 can be decom-
posed as
/3ðx; y; t0; t1Þ ¼ U3ðx; t0; t1Þ þ AðyÞU2;x þ BðyÞU1;xx þ CðyÞU0;xxx ð64Þ
Substituting Eq. (64) into Eqs. (63) and (20) yields
fkðBþ C;yÞg;y ¼ knbA� kðAþ B;yÞ ð65Þ

q02 ¼ knU2;x þ kðAþ B;yÞU1;xx þ kðBþ C;yÞU0;xxx ð66Þ
Following the same way and employing Eqs. (36)–(40), the solution of C(y) can be uniquely determined.
After C(y) is determined, we get
hkBi ¼ ðað1� aÞÞ2ðk2 � k1Þðk1k1 � k2k2Þkn bX2

12knk1k2
ð67Þ

hkðBþ C;yÞi ¼ � að1� aÞkn bX2

12kn

ðk2 � k1Þða2k1 � ð1� aÞ2k2Þ þ knkn

ð1� aÞk1 þ ak2
� kn

( )
ð68Þ
4.5. O(e2) homogenization problem

Consider the O(e2) heat conduction Eq. (27), i.e.
kðs/2;t0t0 þ /2;t0 þ 2s/0;t0t1 þ /0;t1Þ ¼ q03;y þ q02;x
taking into account Fact (2) and the definition of averaging operator yields
hq03;yi ¼ 0 ð69Þ
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Applying the averaging operator to Eq. (27) and then substituting Eqs. (29), (51) and (69) into Eq. (27)
yield
knsU2;t0t0 þ shkAiðU1;xÞ;t0t0 þ shkBiðU0;xxÞ;t0t0 þ knU2;t0 þ hkAiðU1;xÞ;t0
þ hkBiðU0;xxÞ;t0 þ 2knsU0;t0t1 þ knU0;t1 ¼ hq2;xi ð70Þ
Substituting Eq. (66) into Eq. (70), yields
knsU2;t0t0 þ shkAiðU1;xÞ;t0t0 þ shkBiðU0;xxÞ;t0t0 þ knU2;t0 þ hkAiðU1;xÞ;t0 þ hkBiðU0;xxÞ;t0 þ 2knsU0;t0t1 þ knU0;t1

¼ hkð1þA;yÞiU2;xx þ hkðAþB;yÞiU1;xxx þ hkðBþC;yÞiU0;xxxx ð71Þ
Substituting Eqs. (43), (56), (57), (67) and (68) into Eq. (71), yields the macroscopic equation of heat con-
duction at O(e2)
knðsU2;t0t0 þ U2;t0Þ � knU2;xx ¼ kdU0;xxxx � 2knsU0;t0t1 � knU0;t1 ð72Þ

where
kd ¼ hkðBþ C;yÞi � hkBik�1
n kn ¼

ðað1� aÞÞ2ðk1k1 � k2k2Þ2kn bX2

12k2nðð1� aÞk1 þ ak2Þ2
ð73Þ
kd is macroscopic characteristic due to structural heterogeneity.

Remark. For the sake of the further derivation of Eq. (45), we assume constant s = sn, so the following
formulation holds
hkðyÞ � sðyÞi ¼ hkðyÞi � hsðyÞi ð74Þ
which will undoubtedly induce the doubt for the validity of the model developed. This will be checked by
choosing different parameters of k(y) and s(y), i.e. hk(y) Æ s(y)i 5 hk(y)i Æ hs(y)i, in the real problems to be
computed to discuss the validity of the high-order non-local model in which local fluctuations are intro-
duced by material heterogeneity. This will be illuminated in the posterior numerical illustration (Section 7).
5. Non-local model

The macroscopic equations of heat conduction are stated in Eqs. (47), (61) and (72). The initial and
boundary conditions for the above equations of heat conduction are prescribed as:
Initial conditions:
/0ðx; 0; 0Þ ¼ f ðxÞ; _/0ðx; 0; 0Þ ¼ gðxÞ
Usðx; 0; 0Þ ¼ 0; _Usðx; 0; 0Þ ¼ 0 s ¼ 1; 2

ð75Þ
Boundary conditions:
/0ð0; t0; t1Þ ¼ 0; /0;xðL; t0; t1Þ ¼
QðtÞ
kn � F

Usð0; t0; t1Þ ¼ 0; Us;xðL; t0; t1Þ ¼ 0 s ¼ 1; 2

ð76Þ
5.1. Non-local heat conduction equations

In the present paper, an alternative approach is proposed to combine the three sets of macroscopic equa-
tions into a single one and the dependence on the reduced temporal scale can be eliminated.
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Defining the mean temperature field as
Uðx; tÞ ¼ h/ðx; y; tÞi ¼ U0 þ eU1 þ e2U2 þ � � � ð77Þ

whose time derivative can be expressed as
_U ¼ U;t0 þ e2U;t1 ð78Þ

€U ¼ U;t0t0 þ 2e2U;t0t1 þ e4U;t1t1 ð79Þ

Multiplying Eqs. (77)–(79) by e0, e1 and e2, the following relations are obtained
U0 þ eU1 þ e2U2 ¼ U þOðe3Þ; eðU0 þ eU1Þ ¼ eU þOðe3Þ; e2U0 ¼ e2U þOðe3Þ ð80Þ

U;t0 þ e2U;t1 ¼ _U; eU;t0 ¼ e _U þOðe3Þ; e2U;t0 ¼ e2 _U þOðe3Þ ð81Þ

U;t0t0 þ 2e2U;t0t1 ¼ €U þOðe3Þ; eU;t0t0 ¼ e€U þOðe3Þ; e2U;t0t0 ¼ e2 €U þOðe3Þ ð82Þ

The macroscopic equations of heat conduction are expressed as
Oðe0Þ: knðsU0;t0t0 þ U0;t0Þ � knU0;xx ¼ 0 ð83Þ

Oðe1Þ: knðsU1;t0t0 þ U1;t0Þ � knU1;xx ¼ 0 ð84Þ

Oðe2Þ: knðsU2;t0t0 þ U2;t0Þ � knU2;xx ¼ kdU0;xxxx � 2knsU0;t0t1 � knU0;t1 ð85Þ

Multiplying Eqs. (83)–(85) by e0, e1 and e2, and then adding them up, we can obtain the macroscopic high-
order heat conduction equation for the mean temperature field
knsðU0 þ eU1 þ e2U2Þ;t0t0 þ knðU0 þ eU1 þ e2U2Þ;t0 � knðU0 þ eU1 þ e2U2Þ;xx
¼ kde2U0;xxxx � 2knse

2U0;t0t1 � kne
2U0;t1 ð86Þ
Substituting Eqs. (80)–(82) into Eq. (86), and neglecting the terms of order higher than e2, we have
knsU;t0t0 þ 2knse
2U;t0t1 þ knU;t0 þ kne

2U;t1 � knU;xx � kde2U;xxxx ¼ 0

) kns€U þ kn
_U � knU;xx � kde2U;xxxx ¼ 0 ð87Þ
In addition, attention is restricted to the approximation and numerical implementation of Eq. (87). The
highest spatial derivatives in Eq. (87) is fourth order and therefore C1 continuity is required for the corre-
sponding finite element implementation. It thus necessitates four boundary conditions to constitute a well-
posed boundary value problem. However, for the problem under consideration, there are only two
physically meaningful boundary conditions for the mean temperature field. To resolve these difficulties
we will attempt to approximate the fourth-order spatial derivative in terms of the mixed second-order
spatial-temporal derivative, and to obtain in this way C0 continuity for the finite element equation.

5.2. Reformulation of heat conduction equations

Multiplying Eq. (83) by e2, we have
knðse2U0;t0t0 þ e2U0;t0Þ ¼ kne2U0;xx ð88Þ

Substituting Eqs. (80)–(82) into Eq. (88), yields
e2U;xx ¼
kne2ðs€U þ _UÞ

k
þOðe3Þ ð89Þ
n
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Substituting Eq. (89) into Eq. (87) and neglecting the terms higher than e2, we have
knðs€U þ _UÞ � knU;xx � kmðs€U;xx þ _U;xxÞ ¼ 0 ð90Þ

where
km ¼ knkde2

kn
¼ ðað1� aÞÞ2ðk1k1 � k2k2Þ2l2

12knðð1� aÞk1 þ ak2Þ2
ð91Þ
6. Finite element discretization

The finite element semi-discretization of Eq. (90) will be presented in this section. Since the highest spa-
tial derivatives appearing in Eq. (90) are of second order, the usual C0 finite element approximation is suf-
ficient. The weak statement of the problem is formulated as follows. "t 2 (0,T], find
U(x, t) 2 S1(X) · C2(0,T].
For all admissible test functions v(x) 2 S0(X), where S0(X) = {v(x)jv(x) 2 S1(X) and v(x) = 0 on C/}, it

has
 Z
X

knvðs€U þ _UÞF dX �
Z

X
vknU;xxF dX �

Z
X
vkmðs€U;xx þ _U;xxÞF dX ¼ 0 ð92Þ
where S1(X) is the Sobolev space defined as S1(X) = {v(x)jv(x) 2 L2(X),v(x),x 2 L2(X)}, with L2(X) denoting
the set of square-integrable functions over X.
Integrating Eq. (92) by parts yields the following weak form equation
Z

X
knvðs€U þ _UÞF dX þ

Z
X
knv;xU;xF dX þ

Z
X
v;xkmðs€U;x þ _U;xÞF dX

¼ knU;xvðLÞF þ kmðs€U;x þ _U;xÞvðLÞF ð93Þ

Finite element approximation of the above weak form leads to the semi-discrete equations of heat
conduction
M€U þ C _U þ KU ¼ p ð94Þ

where U(t) is the vector of nodal temperature field; M is the system relaxation consistent matrix; C and K

are the system heat capacity and heat conduction matrices; p is the equivalent thermal load vector.
M ¼
XNe

e¼1
me; C ¼

XNe

e¼1
ce; K ¼

XNe

e¼1
ke ð95Þ

me ¼
Z

Xe

knsFN
TNdX þ

Z
Xe

kmsFBTBdX;

ce ¼
Z

Xe

knFN
TNdX þ

Z
Xe

kmFB
TBdX; ke ¼

Z
Xe

knFB
TBdX ð96Þ

p ¼ QðtÞ þ km
kn

½s€QðtÞ þ _QðtÞ�
� �����

x¼L

ð97Þ
where N is the shape function matrix; B is the matrix of symmetric gradient of N; me is the element relax-
ation consistent matrix; ce the element matrix of heat capacity matrix; ke the element heat conduction
matrix.
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7. Numerical illustration

We compute in this section the non-Fourier heat conduction problem in a one-dimensional slender bar
with the periodic microstructure as shown in Fig. 1. The cross-section of the bar is assumed to be unity. The
volume fraction is denoted by f. L is the length of the bar. l is the length of the unit cell. Material properties
are denoted as follows: k is the specific heat of unit volume; k is thermal conductivity; s is the relaxation
time.
In all the cases to be computed, the geometrical parameters are: L = 20 lm, l = 1 lm. The input heat

Q(t) = Q0 Æ t
4 Æ (t�T)4 is supplied at right side of the bar. The adiabatic boundary conditions are imposed

along the bar so that no heat transfer occurs between the bar and the ambience. Assuming that the initial
temperature t = 0 �C is uniform throughout the bar.

7.1. Effects of volume fraction

Material parameters adopted are presented in Table 1. The period of heat load is T = 6.283 · 10�7 s. Fig.
2(a,b) show three curves of midpoint temperature obtained respectively by using (a) finite element model
and (b) high-order non-local model for the different cases of volume fraction parameters 0.0, 0.5 and
1.0. The phenomenon of dispersion can be obviously observed in the periodic heterogeneous materials (vol-
ume fraction 0.5), but disappears in homogeneous materials (volume fraction 0.0 and 1.0). It can also be
observed from this example that the numerical results obtained by the high-order non-local model are good
agreement with the FEM model.

7.2. Effects of heat load period

Material parameters used are given in Table 2. In Fig. 3(a,b,c) there are three curves, which indicate
respectively the solution obtained by the high-order non-local heat conduction model developed in this pa-
per, the classical homogenization method, and the general (fine) finite element computation. Three kinds of
heat load period are computed: (a) T = 6.283 · 10�7 s, (b) T = 15.708 · 10�7 s and (c) T = 31.416 · 10�7 s.
From Fig. 3, it can be found that high-order non-local model is always effective, but the classical homog-
enization model is only valid for the case (c) (see the results in Fig. 3(c)). This is because the classical
homogenization model is only effective for the case that the period of heat load is larger than the time re-
quired for the heat wave moving through one structural unit cell.

7.3. Effects of heat conduction parameters

This example studies the effects of heat conduction parameters in the numerical computations. Four
cases are computed to validate the non-local model and dispersion effects of the numerical model devel-
oped. Material parameters used are shown in Tables 3–6. Three curves of temperature are presented in each
figure which respectively correspond to high-order non-local model, classical homogenization model and
the general (fine) finite element model.
Table 1
Material parameters when T = 6.283 · 10�7 s

k (J/m3K) k (W/mK) s (s)

Phase 1 12.0 · 106 50 1.25 · 10�6

Phase 2 6.0 · 106 25 1.0 · 10�6
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Fig. 2. Temperature response at x = 10 lm for volume fractions of 0.0, 0.5 and 1.0. (a) FEM model, (b) high-order non-local model.

Table 2
Material parameters used in Section 7.2

k (J/m3K) k (W/mK) s (s) f

Phase 1 12.0 · 106 50 1.25 · 10�6 0.5
Phase 2 6.0 · 106 25 1.0 · 10�6 0.5
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The phenomenon of dispersion in non-Fourier heat conduction can be obviously observed in Figs. 4–19.
The results obtained by high-order non-local heat conduction model are good agreement with the general
finite element solutions, whereas the classical homogenization errors badly for the heterogeneous media.
From the results at x = 19 lm, it shows the boundary effect in the homogenization analysis of the het-

erogeneous materials. The boundary effect is quite obvious and the phenomenon of dispersion is quite
strong because the point chosen is not far from the boundary where the heat source is supplied.
From the results at x = 10 lm, it can be found that the classical homogenization method has big errors

and cannot simulate well the dispersion phenomenon. In contrast to this, the high-order non-local heat con-
duction model developed has good tendency on the simulation of the diffusion and boundary effects,
though it and finite element solutions do not agree identically for all time. Furthermore, despite the shift
in phase, the start-up of the temperature response is nearly identical in the high-order non-local and finite
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Fig. 3. Temperature response at x = 10 lm under various heat loads: (a) T = 6.283 · 10�7 s, (b) T = 15.708 · 10�7 s,
(c) T = 31.416 · 10�7 s.

Table 4
Case 2: k1 5 k2, s1 = s2, k1 5 k2, T = 6.283 · 10�7 s

k (J/m3K) k (W/mK) s (s) f

Material parameters Phase 1 12.0 · 106 50 1.0 · 10�6 0.4
(Figs. 8 and 9) Phase 2 3.0 · 106 10 1.0 · 10�6 0.6
Material parameters Phase 1 8.1 · 106 60 2.0 · 10�6 0.4
(Figs. 10 and 11) Phase 2 2.7 · 106 15 2.0 · 10�6 0.6

Table 3
Case 1: k1 = k2, s1 = s2, k1 5 k2, T = 4.713 · 10�7 s

k (J/m3K) k (W/mK) s (s) f

Material parameters Phase 1 3.0 · 106 50 1.0 · 10�6 0.4
(Figs. 4 and 5) Phase 2 3.0 · 106 10 1.0 · 10�6 0.6
Material parameters Phase 1 2.7 · 106 60 2.0 · 10�6 0.4
(Figs. 6 and 7) Phase 2 2.7 · 106 15 2.0 · 10�6 0.6
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element models. This implies that the homogenized heat wave speed is correctly modeled through the high-
order non-local model.
It is also observed that in Figs. 5, 7, 9 and 11, a better approximation (than Figs. 13, 15, 17 and 19) is

provided by high-order non-local heat conduction model in heterogeneous media, because in the cases 1 the



Table 6
Case 4: q1c1 5 q2c2, s1 5 s2, k15 k2, T = 7.854 · 10�7 s

k (J/m3K) k (W/mK) s (s) f

Material parameters Phase 1 12.0 · 106 50 4.0 · 10�6 0.4
(Figs. 16 and 17) Phase 2 3.0 · 106 10 1.0 · 10�6 0.6
Material parameters Phase 1 8.1 · 106 60 6.0 · 10�6 0.4
(Figs. 18 and 19) Phase 2 2.7 · 106 15 2.0 · 10�6 0.6
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Fig. 4. Case 1: temperature response at x = 19 lm.

Table 5
5 Case 3: k1 = k2, s15 s2, k1 5 k2, T = 6.283 · 10�7 s

k (J/m3K) k (W/mK) s (s) f

Material parameters Phase 1 3.0 · 106 50 4.0 · 10�6 0.4
(Figs. 12 and 13) Phase 2 3.0 · 106 10 1.0 · 10�6 0.6
Material parameters Phase 1 2.7 · 106 60 6.0 · 10�6 0.4
(Figs. 14 and 15) Phase 2 2.7 · 106 15 2.0 · 10�6 0.6
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Fig. 5. Case 1: temperature response at x = 10 lm.
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Fig. 6. Case 1: temperature response at x = 19 lm.
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Fig. 7. Case 1: temperature response at x = 10 lm.
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Fig. 8. Case 2: temperature response at x = 19 lm.
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Fig. 9. Case 2: temperature response at x = 10 lm.
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Fig. 10. Case 2: temperature response at x = 19 lm.
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Fig. 11. Case 2: temperature response at x = 10 lm.
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Fig. 12. Case 3: temperature response at x = 19 lm.
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Fig. 13. Case 3: temperature response at x = 10 lm.
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Fig. 14. Case 3: temperature response at x = 19 lm.
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Fig. 15. Case 3: temperature response at x = 10 lm.
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Fig. 16. Case 4: temperature response at x = 19 lm.
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Fig. 17. Case 4: temperature response at x = 10 lm.
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Fig. 18. Case 4: temperature response at x = 19 lm.
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Fig. 19. Case 4: temperature response at x = 10 lm.
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conditions of k1 = k2, s1 = s 2 hold, the high-order non-local heat conduction model is derived without any
other assumptions. While in the cases 4, due to that k1 5 k2, s1 5 s2, it is necessary to introduce an assump-
tion to average these parameters in the model derivative procedure, which will induce naturally some errors
in the numerical computations. This can be demonstrated by the results shown in Figs. 13, 15, 17 and 19.
Even though, the non-local model can still show the advantages on the simulation of the dispersion and
boundary effect in the heterogeneous materials.
8. Conclusions

The non-classical heat conduction problem under extreme conditions is one of the hotspot problems in
current research field of heat conduction and has strong potential for engineering applications. This paper
represents the multiple scale numerical simulation procedure for the solution of heat conduction problems
under high frequency impulse heat load in macroscopically isotropic heterogeneous media. Two different
kinds of scales, the amplified spatial scale and the reduced temporal scale are introduced respectively to
describe the fluctuation effect with multiple temporal scales in local heterogeneous media. Homogenized
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constitutive equations and different orders of boundary value problems are obtained by utilizing the asymp-
totic analysis method with multiple spatial and temporal scales. Homogenized constitutive equations and
different orders of governing equations of boundary value problems are derived by utilizing the asymptotic
analysis method with multiple spatial and temporal scales. Numerical examples demonstrate the validity of
the non-local model proposed. It can be concluded that classical homogenization theory has certain limi-
tation for solving of the problems under special load case, particularly the impulse load with high fre-
quency, and thus high order homogenization theory is required for better modeling of the corresponding
problems.
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